Bone Measurements of Arginine Deficient Broilers Growing under Warm Temperatures

H. T. Dao, A. F. Moss, E. J. Bradbury, R. A. Swick


The effects of L-arginine (Arg) and L-citrulline (Cit) supplementations in an Arg-deficient reduced-protein diet on tibia morphology and mineral composition were investigated in broilers maintained at the thermo-neutral (NT) and cyclic warm temperature (WT). Seven hundred and twenty Ross 308 male broilers were brooded together for the first 7 days and randomly assigned to four dietary treatments with 12 replicates of 15 birds each from days 8 to 35. The dietary treatments were standard protein diet (SP) with 22.3% and 20.9% crude protein in grower and finisher, respectively, an Arg-deficient reduced-protein diet with 2.5% lower protein (RP), and RP added with Arg (RP-Arg) or Cit (RP-Cit) at 0.28%. Dietary treatments were fed from day 8 with average bird’s body weights of 177±3.25 g. Cyclic warm temperature (33 °C ± 1 °C for 6 h per day) was applied in one of the climate-controlled rooms during the finisher phase (21 to 35 day), resulting in a 2 × 4 factorial arrangement of treatments with the factors were the dietary treatment and temperature. Birds fed the RP diet had lower tibia breaking strength (day 28), ash (day 35), and diameter (days 21 and 28) compared to those offered the SP diet (p<0.05). Birds fed the RP diet had lower serum K and tibia B and higher tibia Mn level on day 21; higher serum Ca, P, and Mg, and lower tibia B level on day 28 compared to the SP-fed birds (p<0.05). Supplementation with Arg or Cit compensated for the adverse effects of the RP diet on these traits (p<0.05). Interactions showed tibia diameter decreased in birds fed the SP diet compared to the RP and RP-Cit diets only when raised under cyclic WT on day 35 (p<0.05). Thus, supplementation of Arg or Cit to the RP diet was necessary to support bone morphology and mineralisation under normal and warm temperatures.


Abioja, M. O., K. B. Ogundimu, T. E. Akibo, K. E. Odukoya, O. O. Ajiboye, J. A. Abiona, T. J. Williams, E. O. Oke, & O. A. Osinowo. 2012. Growth, mineral deposition, and physiological responses of broiler chickens offered honey in drinking water during hot-dry season. Int. J. Zool. 2012: Article ID 403502.
Attia, Y. A., R. A. Hassan, A. E. Tag El‐Din, & B. M. Abou‐Shehema. 2011. Effect of ascorbic acid or increasing metabolizable energy level with or without supplementation of some essential amino acids on productive and physiological traits of slow‐growing chicks exposed to chronic heat stress. J. Anim. Physiol. Anim. Nutr. 95:744-755.
Aviagen. 2014a. Ross 308 Broiler Management Handbook. Ross Breeders Limited, Newbridge, Midlothian, Scotland, UK.
Aviagen. 2014b. Ross 308 Broiler Nutrition Specification. Ross Breeders Limited, Newbridge, Midlothian, Scotland, UK.
Belhadj, S. I., T. Najar, A. Ghram, & M. Abdrrabba. 2016. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 100:401-412.
Belloir, P., B. Méda, W. Lambert, E. Corrent, H. Juin, M. Lessire, & S. Tesseraud. 2017. Reducing the CP content in broiler feeds: impact on animal performance, meat quality and nitrogen utilization. Animals. 11:1881-1889.
Brickett, K. E., J. P. Dahiya, H. L. Classen, C. B. Annett, & S. Gomis. 2007. The impact of nutrient density, feed form, and photoperiod on the walking ability and skeletal quality of broiler chickens. Poult. Sci. 86:2117-2125.
Castro, F. L. S., H. Y. Kim, Y. G. Hong, & W. K. Kim. 2019a. The effect of total sulfur amino acid levels on growth performance, egg quality, and bone metabolism in laying hens subjected to high environmental temperature. Poult. Sci. 98:4982-4993.
Castro, F. L. S., S. Su, H. Choi, E. Koo, & W. K. Kim. 2019b. L-arginine supplementation enhances growth performance, lean muscle, and bone density but not fat in broiler chickens. Poult. Sci. 98:1716-1722.
Chrystal, P. V., A. F. Moss, A. Khoddami, V. D. Naranjo, P. H. Selle, & S. Y. Liu. 2020. Effects of reduced crude protein levels, dietary electrolyte balance, and energy density on the performance of broiler chickens offered maize-based diets with evaluations of starch, protein, and amino acid metabolism. Poult. Sci. 99:1421-1431.
Cowieson, A. J., R. Perez-Maldonado, A. Kumar, & M. Toghyani. 2020. Possible role of available phosphorus in potentiating the use of low protein diets for broiler chicken production. Poult. Sci. 99:6954-6963.
Dao, H. T., N. K. Sharma, E. J. Bradbury, & R. A. Swick. 2021a. Response of meat chickens to different sources of arginine in low‐protein diets. J. Anim. Physiol. Anim. Nutr. 105:731-746.
Dao, H. T., N. K. Sharma, E. J. Bradbury, & R. A. Swick. 2021b. Effects of L-arginine and L-citrulline supplementation in reduced protein diets for broilers under normal and cyclic warm temperature. Anim. Nutr. 7:927-938.
Dao, H. T., N. K. Sharma, E. J. Bradbury, & R. A. Swick. 2021c. Response of laying hens to L-arginine, L-citrulline and guanidinoacetic acid supplementation in reduced protein diet. Anim. Nutr. 7:460-471.
del Barrio, A. S., W. D. Mansilla, A. Navarro-Villa, J. H. Mica, J. H. Smeets, L. A. den Hartog, & A. I. García-Ruiz. 2020. Effect of mineral and vitamin C mix on growth performance and blood corticosterone concentrations in heat-stressed broilers. J. Appl. Poult. Res. 29:23-33.
Esser, A. F. G., D. R. M. Gonçalves, A. Rorig, A. B. Cristo, R. Perini, & J. I. M. Fernandes. 2017. Effects of guanidionoacetic acid and arginine supplementation to vegetable diets fed to broiler chickens subjected to heat stress before slaughter. Rev. Bras. Cienc. Avic. 19:429-436.
Farag, M. R. & M. Alagawany. 2018. Physiological alterations of poultry to the high environmental temperature. J. Therm. Biol. 76:101-106.
Fouad, A. M., H. K. El-Senousey, X. J. Yang, & J. H. Yao. 2013. Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animals. 7:1239-1245.
Heaney, R. P. & D. K. Layman. 2008. Amount and type of protein influences bone health. Am. J. Clin. Nutr. 87:1567S-1570S.
Hilliar, M., N. Huyen, C. K. Girish, R. Barekatain, S. Wu, & R. A. Swick. 2019. Supplementing glycine, serine, and threonine in low protein diets for meat type chickens. Poult. Sci. 98:6857-6865.
Hosseini, S. M. & M. Afshar. 2017. Effect of diet form and enzyme supplementation on stress indicators and bone mineralisation in heat-challenged broilers fed wheat-soybean diet. Ital. J. Anim. Sci. 16:616-623.
Jahanian, R. 2009. Immunological responses as affected by dietary protein and arginine concentrations in starting broiler chicks. Poult. Sci. 88:1818-1824.
Khattak, F. M., T. Acamovic, N. Sparks, T. N. Pasha, M. H. Joiya, Z. Hayat, & Z. Ali. 2012. Comparative efficacy of different supplements used to reduce heat stress in broilers. Pak. J. Zool. 44:31-41.
Kurtoğlu, F., V. Kurtoğlu, I. Celik, T. Kececi, & M. Nizamlioğlu. 2005. Effects of dietary boron supplementation on some biochemical parameters, peripheral blood lymphocytes, splenic plasma cells and bone characteristics of broiler chicks given diets with adequate or inadequate cholecalciferol (vitamin D3) content. Br. Poult. Sci. 46:87-96.
Kvidera, S. K., E. A. Horst, E. J. Mayorga, J. T. Seibert, M. A. Al-Qaisi, J. W. Ross, R. P. Rhoads, & L. H. Baumgard. 2016. 0995 Effect of supplemental citrulline on thermal and production parameters during heat stress in growing pigs. J. Anim. Sci. 94:477.
Lips, P. 2012. Interaction between vitamin d and calcium. Scand. J. Clin. Lab. Invest. 72:60-64.
Liu, F., E. M. de Ruyter, R. Z. Athorn, C. J. Brewster, D. J. Henman, R. S. Morrison, R. J. Smits, J. J. Cottrell, & F. R. Dunshea. 2019. Effects of L‐citrulline supplementation on heat stress physiology, lactation performance and subsequent reproductive performance of sows in summer. J. Anim. Physiol. Anim. Nutr. 103:251-257.
Luo, J., J. Song, L. Liu, B. Xue, G. Tian, & Y. Yang. 2018. Effect of epigallocatechin gallate on growth performance and serum biochemical metabolites in heat-stressed broilers. Poult. Sci. 97:599-606.
Mosleh, N., T. Shomali, F. Nematollahi, Z. Ghahramani, M. S. A. Khadi, & F. Namazi. 2018. Effect of different periods of chronic heat stress with or without vitamin C supplementation on bone and selected serum parameters of broiler chickens. Avian Pathol. 47:197-205.
NHMRC. 2013. Australian Code of Practice for the Care and Use of Animals for Scientific Purposes. 8th Ed. The National Health and Medical Research Council, Australia.
Oliveira, M. C., U. M. Arantes, & J. H. Stringuini. 2010. Efeito do balanco eletrolitico da racao sobre parametros osseos e da cama de frango. Biotemas. 23:203-209.
Onderci, M., N. Sahin, K. Sahin, T. A. Balci, M. F. Gursu, V. Juturu, & O. Kucuk. 2006. Dietary arginine silicate inositol complex during the late laying period of quail at different environmental temperatures. Br. Poult. Sci. 47:209-215.
Patience, J. F. 1990. A review of the role of acid-base balance in amino acid nutrition. J. Anim. Sci. 68:398-408.
Seedor, J. G., H. A. Quartuccio, & D. D. Thompson. 1991. The biophosphonate alendronate (MK - 217) inhibits bone loss due to ovariectomy in rats. J. Bone Miner. Res. 6:339-346.
Sgavioli, S. C. H. F. Domingues, E. T. Santos, T. C. O. de Quadros, L. L. Borges, R. G. Garcia, M. J. Q. L. Louzada, & I. C. Boleli. 2016. Effect of in-ovo ascorbic acid injection on the bone development of broiler chickens submitted to heat stress during incubation and rearing. Rev. Bras. Cienc. Avic. 18:153-162.
Silva, L. M. G. S., A. E. Murakami, J. I. M. Fernandes, D. Dalla Rosa, & J. F. Urgnani. 2012. Effects of dietary arginine supplementation on broiler breeder egg production and hatchability. Rev. Bras. Cienc. Avic. 14:267-273.
Su, C. L. & R. E. Austic. 1999. The recycling of L-citrulline to L-arginine in a chicken macrophage cell line. Poult. Sci. 78:353-355.
Talaty, P. N., M. N. Katanbaf, & P. Y. Hester. 2009. Life cycle changes in bone mineralisation and bone size traits of commercial broilers. Poult. Sci. 88:1070-1077.
Wu, S. B., R. A. Swick, J. Noblet, N. Rodgers, D. Cadogan, & M. Choct. 2019. Net energy prediction and energy efficiency of feed for broiler chickens. Poult. Sci. 98:1222-1234.
Zaman, Q. U., T. Mushtaq, H. Nawaz, M. A. Mirza, S. Mahmood, T. Ahmad, M. E. Babar, & M. M. H. Mushtaq. 2008. Effect of varying dietary energy and protein on broiler performance in hot climate. Anim. Feed Sci. Technol. 146:302-312.
Zanu, H. K., S. K. Kheravii, N. K. Morgan, M. R. Bedford, & R. A. Swick. 2020. Interactive effect of dietary calcium and phytase on broilers challenged with subclinical necrotic enteritis: 3. serum calcium and phosphorus, and bone mineralization. Poult. Sci. 99:3617-3627.
Zemel, M. B. 1988. Calcium utilization: effect of varying level and source of dietary protein. Am. J. Clin. Nutr. 48:880-883.


H. T. Dao
A. F. Moss
E. J. Bradbury
R. A. Swick (Primary Contact)
DaoH. T., MossA. F., BradburyE. J., & SwickR. A. (2022). Bone Measurements of Arginine Deficient Broilers Growing under Warm Temperatures. Tropical Animal Science Journal, 45(3), 356-367.

Article Details