Selected Chemical Peat Properties Distribution in Palm Oil Plantation and Its Relationship with Depth Layer and Distance from Mineral Soil Derived From Ultrabasic Rocks

Distribusi Sifat Kimia Gambut di Perkebunan Sawit dan Hubungannya dengan Kedalaman Lapisan Gambut dan Jarak dari Tanah Mineral Berbahan Induk Batuan Ultrabasa

  • Heru Bagus Pulunggono Department of Soil Science and Land Resources, Faculty of Agriculture, IPB University
  • Moh. Zulfajrin Program Studi Manajemen Sumberdaya Lahan, Fakultas Pertanian, IPB University
  • Arief Hartono Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, IPB University
Keywords: peat, macro and micro nutrients, mineral soil derived from ultrabasic rocks

Abstract

Peatland at the research site utilized for oil palm plantation situated alongside with ultrabasic mineral soils. High Mg content in the soil has been reported to inhibit plant growth and distrupt nutrient absorption. Research is aimet to study of pH; Cation Exchange Capacity (CEC); macronutrient of potassium (K), calcium (Ca) and magnesium (Mg); beneficial nutrient of sodium (Na); and micronutrients of iron (Fe), manganese (Mn), copper (Cu) and Zink (Zn) distribution in peat and its relationship with peat depth and distance to ultrabasic mineral soil. The composite of 1,0 kg peat soil samples were collected from the depth of 0 – 30 cm, 30 – 60 cm and 60 - 90 cm toposequently with the distance of 100, 200, 300, 400, 500 and 600 m from the ultrabasic mineral soil. Analysis of peat samples was carried out to determine (i) the contents of K, Ca, Mg, Na extracted by amonium acetate and (ii) the contents of Fe, Mn, Cu, and Zn extracted by DTPA. The result of the study showed that pH value decreased significantly along with increasing peat depth and tended to decrease with increasing distance from mineral soil. CEC content fluctuated and tended to increase along with increasing  peat depth and distance from mineral soil. Based on the measurement of Mg and Fe, mineral soil nutrient affected peat to the distance of 600 m from its border. According to Balittanah criteria, peat in the transect area contain high level of available Mg, Na, Fe, Mn, and Zn and low level of K and Ca. Available content of Cu classified as moderate in all depth and distance, except 600 meter and 60 – 90 cm respectively. Beneficial nutrient of Na showed positive correlation with peat depth, indicating marine influence from mineral soil in subsurface. The great disparity between Mg with other cations may disrupt root absorbtion and lead to K and Ca leaching from peat solum.

Downloads

Download data is not yet available.

References

Alhammadi, M.S. and G.P. Edward. 2009. Effect of salinity on growth of twelve cultivars of the United Arab Emirates date palm. Commun. Soil Sci. Plan., 40: 2372-2388

Amory, D.E. and J.E. Dufey. 1984. Adsorption and exchange of Ca, Mg and K-ions on the root cell walls of clover and rye-grass. Plant. Soil., 80:181-190

[Balittanah] Balai Penelitian Tanah. 2009. Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. B.H. Prasetyo, D. Santoso, L.R. Widowati (Eds.). Balai Penelitian Tanah, Bogor. Pp. 211–213.

Broadley, M., P. Brown, I. Cakmak, J.F. Ma, Z. Rengel and F. Zhao. 2012. Beneficial Elements. In: Marschner P (Ed.), Marschner’s Mineral Nutrition of Higher Plants. Elsevier, London. Pp. 249–257

Clymo, R.S. 1964. The origin of acidity in sphagnum bogs. Bryologist, 67(4): 427–431.

Fauque, G.D. 1995. Ecology of sulfate-reducing bacteria. In L.L. Barton (Ed.). Sulfate-Reducing Bacteria. Biotechnology Handbooks. 8th Edition. Springer. Boston. p.217–241.

Firmansyah, E. 2018. Perubahan morfologis dan anatomis kelapa sawit pada rezim air dan salinitas berbeda. J. Agro., 5(1): 13-29.

Fu, W., J. Yang, M. Yang, B. Pang, X. Liu, H. Niu and X. Huang. 2014. Mineralogical and geochemical characteristics of a serpentinite-derived laterite profile from East Sulawesi, Indonesia: Implications for the lateritization process and Ni supergene enrichment in the tropical rainforest. J. Asian. Earth. Sci., 93: 74–88.

Ghafoor. A., M.I. Shahid, M. Saghir and G. Murtaza. 1992. Use of high-Mg brackish water on phosphogypsum and fym treated saline-sodic soil. II. Growth of wheat and rice. Pak. J. Agri. Sci., 29(3): 298–302.

Hall, R. and E.J. Wilson. 2000. Neogene suture in Eastern Indonesia. J. Asian Earth Sci., 18: 781–808.

Hawkesford. M., W. Horst, T. Kichey, H. Lambers, J. Schjoerring, I.S. Møller and P. White. 2012. Functions of Macronutrients. Beneficial Elements. In P. Marschner (Ed.), Marschner’s Mineral Nutrition of Higher Plants. Elsevier, London. Pp. 135–189.

Hikmatullah and Sukarman. 2014. Physical and chemical properties of cultivated peat soils in four trial sites of ICCTF in Kalimantan and Sumatra, Indonesia. J. Trop. Soils, 19(3): 131–141.

Jenny, H. 1966. Pathways of ions from soil into root according to diffusion models. Plant. Soil, 25(2): 265–289.

Kadarusman, A., S. Miyashita, S. Maruyama, C.D. Parkinson and A. Ishikawa. 2004. Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia. Tectonophysics, 392: 55–83.

Kopittke, P.M. and N.W. Menzies. 2005. Mg induced Ca deficiency under alkaline conditions. Plant. Soil, 269: 245–250.

Lindsay, W.L. and W.A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil. Sci. Soc. Am. J., 42: 421–428.

Lund, Z.F. 1970. The effect of calcium and its relation to several cations in soybean root growth. Soil Sci. Soc. Am. J., 34(3): 456.

Miller, R.O. 1998. Nitric-perchloric acid wet digestion in an open vessel. In YP Kalra (Eds.), Handbook of Reference Methods for Plant Analysis. CRC Press, Taylor & Francis Group. New York. Pp. 57–62.

Miyajima, T., E. Wada, Y.T. Hanba and P. Vijarnsorn. 1997. Anaerobic mineralization of indigenous organic matters and methanogenesis in tropical wetland soils. Geochim. Cosmochim. Ac., 61(17): 3739–3751.

Morrissey, E.M., J.L. Gillespie, J.C. Morina and R.B. Franklin. 2014. Salinity affects microbial activity and soil organic matter content in tidal wetlands. Glob. Change Biol., 20(4): 1351–1362.

Mulyani, A., D. Nursyamsi dan D. Harnowo. 2016. Potensi dan Tantangan Pemanfaatan Lahan Suboptimal untuk Tanaman Aneka Kacang dan Umbi. In: A.A. Rahmianna, D. Harnowo, Sholihin, N. Nugrahaeni, A. Taufiq, Suharsono, E. Yusnawan, E. Ginting, F. Rozi, Hermanto (Eds.), Prosiding Seminar Hasil Penelitian Tanaman Aneka Kacang dan Umbi; 2016 25 Mei; Malang. Badan Penelitian dan Pengembangan Pertanian, Pusat Penelitian dan Pengembangan Tanaman Pangan, Bogor. Pp. 16–30.

Mulyani, A. dan M. Sarwani. 2013. Karakteristik dan potensi lahan sub optimal untuk pengembangan pertanian di Indonesia. Jurnal Sumberdaya Lahan, 7(1): 47–55.

Ngadze, E., T.A. Coutinho, D. Icishahayo and J.E. van der Waals. 2014. Effect of calcium soil amendments on phenolic compounds and soft rot resistance in potato tubers. Crop Protection, 62: 40–45.

Noor, M., Masganti, F. dan Agus. 2014. Pembentukan dan Karakteristik Gambut Tropika Indonesia. In F. Agus, M. Anda, A. Jamil, and Masganti (Eds.). Lahan Gambut Indonesia: Pembentukan, Karakteristik, dan Potensi Mendukung Ketahanan Pangan. Badan Penelitian dan Pengembangan Pertanian, Bogor. Pp. 7–32.

Page, S.E., R.A.J. Wüst, D. Weiss, J.O. Rieley, Ò.W. Shotyk and S.H. Limin. 2004. A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J. Quaternary. Sci., 19(7): 625–635.

Parkinson, C. 1998. Emplacement of the East Sulawesi Ophiolite : evidence from subophiolite metamorphic rocks. J. Asian. Earth. Sci., 16(1): 13-28.

Pester, M, K.H. Knorr, M.W. Friedrich, M. Wagner and A. Loy. 2012. Sulfate-reducing microorganisms in wetlands – fameless actors in carbon cycling and climate change. Front. Microbiol., 72(3): 1–19.

Ritung, S., E. Suryani, E. Yatno, Hikmatullah, K. Nugroho, Sukarman, R.E. Subandiono, M. Hikmat, C. Tafakresnanto, Suratman, H. Hidayat, D. Sudrajat, Ponidi, U. Suryana, W. Supriatna and A. Hartadi. 2019. Peta Lahan Gambut Indonesia Skala 1:50.000. December 2019 Edition. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Bogor. 13 p.

Riwandi. 2001. Kajian stabilitas gambut tropika Indonesia berdasarkan analisis kehilangan karbon organik, sifat fisiko-kimia, dan komposisi bahan gambut [Tesis]. IPB, Bogor.

Sabiham, S. 2010. Properties of Indonesian Peat in relation to the chemistry of carbon emission. In: Z.-N. Cheng and F. Agus (Eds.), International Workshop on Evaluation and Sustainable Management of Soil Carbon Sequestration in Asian Countries. 2010 28-29 September; Bogor. Balai Penelitian Tanah, Bogor. Pp. 205–216.

Sabiham, S. 1988. Studies on peat in the coastal plains of Sumatra and Borneo. Part I: physiography and geomorphology of the coastal plains. Southeast Asian Studies, 27(4): 461-484.

Sabiham, S. and H. Furukawa. 1986. Problem soils in Southeast Asia: a study of floral composition of peat soil in the Lower Batang Hari River Basin of Jambi, Sumatra. Southeast Asian Studies, 24(2): 113–132.

Schollenberger, C.J. and R.H. Simon. 1945. Determination of exchange capacity and exchangeable bases in soil-ammonium acetate method. Soil. Sci., 59(1): 13–24.

Sitorus, S.R.P., M. Mulyani dan D.R. Panuju. 2011. Konversi lahan pertanian dan keterkaitannya dengan kelas kemampuan lahan serta hirarki wilayah di Kabupaten Bandung Barat. J. Tanah. Lingk., 13(2): 49–57.

Sjöström, E. 2013. Wood Chemistry: Fundamentals and Applications. 2nd Edition. Academic Press, San Diego.

Smith, R.M and D.E. Hansen. 1998. The pH-rate profile for the hydrolysis of a peptide bond. J. Am. Chem. Soc., 120: 8910–8913.

Sollins, P., P. Homann and B.A. Caldwell. 1996. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74: 65–105.

Spearman, C.E. 1904. The proof and measurement of association between two things. Am. J. Psychol., 15: 72–101.

Spearman, C.E. 1906. ‘Footrule’ for measuring correlation. Brit. J. Psychol., 2: 89-108.

Strehse, R., H. Bohne, Y. Amha and P. Leinweber. 2018. The influence of salt on dissolved organic matter from peat soils. Org. Geochem., 125: 270–276.

Tim Fakultas Pertanian. 2012. Evaluasi hasil pemupukan Pamafert di kebun kelapa sawit PT Gawi Bahandep Sawit Mekar. Sampit, Kalteng. Kerjasama Departemen Ilmu Tanah, Fakultas Pertanian IPB – PT Sri Rejeki Fertilizer, Bogor.

[USDA] United States Department of Agriculture. 2019. Oilseeds: World Markets and Trade. Foreign Agricultural Service, United States Department of Agriculture. Washington DC.

Watanabe, T., Y. Hasenaka, Suwondo, S. Sabiham and S. Funakawa. 2013. Mineral nutrient distributions in tropical peat soil of Riau, Indonesia with special reference to peat thickness. Jpn. Soc. Pedol., 57(2): 64–71.

Yonebayashi, K., J. Pechayapisit, P. Vijarnsorn, A.B. Zahari and K. Kyuma. 1994. Chemical alterations of tropical peat soils determined by Waksman's proximate analysis and properties of humic acids. Soil. Sci. Plant. Nutr., 40(3): 435–444.

Zhang, X.C. and L.D. Norton. 2002. Effect of exchangeable Mg on saturated hydrolic conductivity, disaggregation, and clay dispersion of disturbed soil. J. Hydrol., 260: 194–205.

Published
2020-04-01
How to Cite
Pulunggono, H. B., Zulfajrin, M., & Hartono, A. (2020). Selected Chemical Peat Properties Distribution in Palm Oil Plantation and Its Relationship with Depth Layer and Distance from Mineral Soil Derived From Ultrabasic Rocks: Distribusi Sifat Kimia Gambut di Perkebunan Sawit dan Hubungannya dengan Kedalaman Lapisan Gambut dan Jarak dari Tanah Mineral Berbahan Induk Batuan Ultrabasa. Jurnal Ilmu Tanah Dan Lingkungan, 22(1), 22-28. https://doi.org/10.29244/jitl.22.1.22-28